Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 11(10): 3965-76, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21152313

RESUMO

Lysophosphatidic acid (LPA) is the umbrella term for lipid signaling molecules that share structural homology and activate the family of LPA receptors. Farnesyl Pyrophosphate (FPP) is commonly known as an intermediate in the synthesis of steroid hormones; however, its function as a signaling lipid is beginning to be explored. FPP was recently shown to an activator of the G-protein coupled receptor 92 (also known as LPA5) of the calcium channel TRPV(3). The LPA receptors (including GPR92) are associated with the signal transduction of noxious stimuli, however, very little is known about the distribution of their signaling ligands (LPAs and FPP) in the brain. Here, using HPLC/MS/MS, we developed extraction and analytical methods for measuring levels of FPP and 4 species of LPA (palmitoyl, stearoyl, oleoyl and arachidonoyl-sn-glycerol-3 phosphate) in rodent brain. Relative distributions of each of the five compounds was significantly different across the brain suggesting divergent functionality for each as signaling molecules based on where and how much of each is being produced. Brainstem, midbrain, and thalamus contained the highest levels measured for each compound, though none in the same ratios while relatively small amounts were produced in cortex and cerebellum. These data provide a framework for investigations into functional relationships of these lipid ligands in specific brain areas, many of which are associated with the perception of pain.


Assuntos
Encéfalo/metabolismo , Lisofosfolipídeos/metabolismo , Fosfatos de Poli-Isoprenil/metabolismo , Sesquiterpenos/metabolismo , Animais , Feminino , Especificidade de Órgãos , Ratos , Ratos Sprague-Dawley
2.
BMC Neurosci ; 11: 44, 2010 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-20346144

RESUMO

BACKGROUND: Microglia provide continuous immune surveillance of the CNS and upon activation rapidly change phenotype to express receptors that respond to chemoattractants during CNS damage or infection. These activated microglia undergo directed migration towards affected tissue. Importantly, the molecular species of chemoattractant encountered determines if microglia respond with pro- or anti-inflammatory behaviour, yet the signaling molecules that trigger migration remain poorly understood. The endogenous cannabinoid system regulates microglial migration via CB2 receptors and an as yet unidentified GPCR termed the 'abnormal cannabidiol' (Abn-CBD) receptor. Abn-CBD is a synthetic isomer of the phytocannabinoid cannabidiol (CBD) and is inactive at CB1 or CB2 receptors, but functions as a selective agonist at this Gi/o-coupled GPCR. N-arachidonoyl glycine (NAGly) is an endogenous metabolite of the endocannabinoid anandamide and acts as an efficacious agonist at GPR18. Here, we investigate the relationship between NAGly, Abn-CBD, the unidentified 'Abn-CBD' receptor, GPR18, and BV-2 microglial migration. RESULTS: Using Boyden chamber migration experiments, yellow tetrazolium (MTT) conversion, In-cell Western, qPCR and immunocytochemistry we show that NAGly, at sub-nanomolar concentrations, and Abn-CBD potently drive cellular migration in both BV-2 microglia and HEK293-GPR18 transfected cells, but neither induce migration in HEK-GPR55 or non-transfected HEK293 wildtype cells. Migration effects are blocked or attenuated in both systems by the 'Abn-CBD' receptor antagonist O-1918, and low efficacy agonists N-arachidonoyl-serine and cannabidiol. NAGly promotes proliferation and activation of MAP kinases in BV-2 microglia and HEK293-GPR18 cells at low nanomolar concentrations - cellular responses correlated with microglial migration. Additionally, BV-2 cells show GPR18 immunocytochemical staining and abundant GPR18 mRNA. qPCR demonstrates that primary microglia, likewise, express abundant amounts of GPR18 mRNA. CONCLUSIONS: NAGly is the most effective lipid recruiter of BV-2 microglia currently reported and its effects mimic those of Abn-CBD. The data generated from this study supports the hypothesis that GPR18 is the previously unidentified 'Abn-CBD' receptor. The marked potency of NAGly acting on GPR18 to elicit directed migration, proliferation and perhaps other MAPK-dependent phenomena advances our understanding of the lipid-based signaling mechanisms employed by the CNS to actively recruit microglia to sites of interest. It offers a novel research avenue for developing therapeutics to elicit a self-renewing population of neuroregenerative microglia, or alternatively, to prevent the accumulation of misdirected, pro-inflammatory microglia which contribute to and exacerbate neurodegenerative disease.


Assuntos
Ácidos Araquidônicos/metabolismo , Movimento Celular/imunologia , Glicina/análogos & derivados , Microglia/metabolismo , Receptores de Canabinoides/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Animais Recém-Nascidos , Ácidos Araquidônicos/farmacologia , Agonistas de Receptores de Canabinoides , Moduladores de Receptores de Canabinoides/farmacologia , Linhagem Celular Transformada , Movimento Celular/efeitos dos fármacos , Quimiotaxia/efeitos dos fármacos , Quimiotaxia/fisiologia , Glicina/metabolismo , Glicina/farmacologia , Humanos , Vigilância Imunológica/efeitos dos fármacos , Vigilância Imunológica/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/imunologia , Receptores Acoplados a Proteínas G/agonistas , Resorcinóis/metabolismo , Resorcinóis/farmacologia
3.
J Lipid Res ; 51(1): 112-9, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19584404

RESUMO

Using a partially purified bovine brain extract, our lab identified three novel endogenous acyl amino acids in mammalian tissues. The presence of numerous amino acids in the body and their ability to form amides with several saturated and unsaturated fatty acids indicated the potential existence of a large number of heretofore unidentified acyl amino acids. Reports of several additional acyl amino acids that activate G-protein coupled receptors (e.g., N-arachidonoyl glycine, N-arachidonoyl serine) and transient receptor potential channels (e.g., N-arachidonoyl dopamine, N-acyl taurines) suggested that some or many novel acyl amino acids could serve as signaling molecules. Here, we used a targeted lipidomics approach including specific enrichment steps, nano-LC/MS/MS, high-throughput screening of the datasets with a potent search algorithm based on fragment ion analysis, and quantification using the multiple reaction monitoring mode in Analyst software to measure the biological levels of acyl amino acids in rat brain. We successfully identified 50 novel endogenous acyl amino acids present at 0.2 to 69 pmol g(-1) wet rat brain.


Assuntos
Aminoácidos/análise , Encéfalo/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Animais , Bovinos , Metabolismo dos Lipídeos , Masculino , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/agonistas , Extração em Fase Sólida , Ácido gama-Aminobutírico/metabolismo
4.
Anal Chem ; 82(1): 359-67, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19968249

RESUMO

The ability to analyze complex (macro) molecules is of fundamental importance for understanding chemical, physical, and biological processes. Complexity may arise from small differences in structure, large dynamic range, as well as a vast range in solubility or ionization, imposing daunting tasks in areas as different as lipidomics and proteomics. Here, we describe a rapid matrix application that permits the deposition of matrix-assisted laser desorption/ionization (MALDI) matrix solvent-free. This solvent-free one-step automatic matrix deposition is achieved through vigorous movements of beads pressing the matrix material through a metal mesh. The mesh (20 mum) produces homogeneous coverage of <12 microm crystals (DHB, CHCA matrixes) in 1 min, as determined by optical microscopy, permitting fast uniform coverage of analyte and possible high-spatial resolution surface analysis. Homogenous tissue coverage of <5 microm sized crystals is achieved using a 3 microm mesh. Solvent-free MALDI analysis on a time-of-flight (TOF) mass analyzer of mouse brain tissue homogenously covered with CHCA matrix subsequently provides a homogeneous response in ion signal intensity. Total solvent-free analysis (TSA) by mass spectrometry (MS) of tissue sections is carried out by applying the MALDI matrix solvent-free for subsequent ionization and gas phase separation for decongestion of complexity in the absence of any solvent using ion mobility spectrometry (IMS) followed by MS detection. Isobaric compositions were well-delineated using TSA by MS.


Assuntos
Encéfalo/anatomia & histologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Camundongos , Camundongos Endogâmicos C57BL , Solventes
6.
Vitam Horm ; 81: 191-205, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19647113

RESUMO

Discovery of the endogenous cannabinoid and N-acyl amide, anandamide (N-arachidonoyl ethanolamine), paved the way for lipidomics discoveries in the growing family of N-acyl amides. Lipidomics is a field that is broadening our view of the molecular world to include a wide variety of endogenous lipid signaling molecules. Many of these lipids will undoubtedly provide new insights into old questions while others will provide broad platforms for new questions. J Michael Walker's last 8 years were dedicated to this search and he lived long enough to see 54 novel lipids isolated from biological tissues in his laboratory. Here, we summarize the biosynthesis, metabolism and biological activity of two of the family of N-acyl glycines, N-arachidonoyl glycine and N-palmitoyl glycine, and introduce four additional members: N-stearoyl glycine, N-linoleoyl glycine, N-oleoyl glycine, and N-docosahexaenoyl glycine. Each of these compounds is found throughout the body at differing levels suggesting region-specific functionality and at least four of the N-acyl glycines are regulated by the enzyme fatty acid amide hydrolase. The family of N-acyl glycines presented here is merely a sampling of what is to come in the continuing discovery of novel endogenous lipids.


Assuntos
Moduladores de Receptores de Canabinoides , Glicina/análogos & derivados , Animais , Ácidos Araquidônicos/biossíntese , Ácidos Araquidônicos/química , Ácidos Araquidônicos/fisiologia , Moduladores de Receptores de Canabinoides/química , Moduladores de Receptores de Canabinoides/fisiologia , Glicina/biossíntese , Glicina/química , Glicina/fisiologia , Humanos , Estrutura Molecular , Ácidos Palmíticos/química , Transdução de Sinais
7.
Prostaglandins Leukot Essent Fatty Acids ; 81(4): 291-301, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19570666

RESUMO

N-arachidonoyl dopamine (NADA) is an endogenous ligand that activates the cannabinoid type 1 receptor and the transient receptor potential vanilloid type 1 channel. Two potential biosynthetic pathways for NADA have been proposed, though no conclusive evidence exists for either. The first is the direct conjugation of arachidonic acid with dopamine and the other is via metabolism of a putative N-arachidonoyl tyrosine (NA-tyrosine). In the present study we investigated these biosynthetic mechanisms and report that NADA synthesis requires TH in dopaminergic terminals; however, NA-tyrosine, which we identify here as an endogenous lipid, is not an intermediate. We show that NADA biosynthesis primarily occurs through an enzyme-mediated conjugation of arachidonic acid with dopamine. While this conjugation likely involves a complex of enzymes, our data suggest a direct involvement of fatty acid amide hydrolase in NADA biosynthesis either as a rate-limiting enzyme that liberates arachidonic acid from AEA, or as a conjugation enzyme, or both.


Assuntos
Ácido Araquidônico/metabolismo , Ácidos Araquidônicos/biossíntese , Moduladores de Receptores de Canabinoides/biossíntese , Dopamina/análogos & derivados , Dopamina/metabolismo , Endocanabinoides , Amidoidrolases/metabolismo , Animais , Ácido Araquidônico/química , Ácidos Araquidônicos/química , Encéfalo/metabolismo , Moduladores de Receptores de Canabinoides/química , Dopamina/biossíntese , Dopamina/química , Masculino , Ratos , Ratos Sprague-Dawley
8.
BMC Biochem ; 10: 14, 2009 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-19460156

RESUMO

BACKGROUND: N-arachidonoyl glycine (NAGly) is an endogenous signaling lipid with a wide variety of biological activity whose biosynthesis is poorly understood. Two primary biosynthetic pathways have been proposed. One suggests that NAGly is formed via an enzymatically regulated conjugation of arachidonic acid (AA) and glycine. The other suggests that NAGly is an oxidative metabolite of the endogenous cannabinoid, anandamide (AEA), through an alcohol dehydrogenase. Here using both in vitro and in vivo assays measuring metabolites with LC/MS/MS we test the hypothesis that both pathways are present in mammalian cells. RESULTS: The metabolic products of deuterium-labeled AEA, D4AEA (deuterium on ethanolamine), indicated that NAGly is formed by the oxidation of the ethanolamine creating a D2NAGly product in both RAW 264.7 and C6 glioma cells. Significantly, D4AEA produced a D0NAGly product only in C6 glioma cells suggesting that the hydrolysis of AEA yielded AA that was used preferentially in a conjugation reaction. Addition of the fatty acid amide (FAAH) inhibitor URB 597 blocked the production of D0NAGly in these cells. Incubation with D8AA in C6 glioma cells likewise produced D8NAGly; however, with significantly less efficacy leading to the hypothesis that FAAH-initiated AEA-released AA conjugation with glycine predominates in these cells. Furthermore, the levels of AEA in the brain were significantly increased, whereas those of NAGly were significantly decreased after systemic injection of URB 597 in rats and in FAAH KO mice further supporting a role for FAAH in endogenous NAGly biosynthesis. Incubations of NAGly and recombinant FAAH demonstrated that NAGly is a significantly less efficacious substrate for FAAH with only ~50% hydrolysis at 30 minutes compared to 100% hydrolysis of AEA. Co-incubations of AEA and glycine with recombinant FAAH did not, however, produce NAGly. CONCLUSION: These data support the hypothesis that the signaling lipid NAGly is a metabolic product of AEA by both oxidative metabolism of the AEA ethanolamine moiety and through the conjugation of glycine to AA that is released during AEA hydrolysis by FAAH.


Assuntos
Ácidos Araquidônicos/biossíntese , Glicina/análogos & derivados , Redes e Vias Metabólicas , Alcamidas Poli-Insaturadas/metabolismo , Amidoidrolases/antagonistas & inibidores , Amidoidrolases/deficiência , Animais , Ácidos Araquidônicos/química , Ácidos Araquidônicos/metabolismo , Benzamidas/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Química Encefálica , Carbamatos/farmacologia , Linhagem Celular Tumoral , Endocanabinoides , Glicina/biossíntese , Glicina/química , Glicina/metabolismo , Metabolismo dos Lipídeos , Masculino , Camundongos , Camundongos Knockout , Oxirredução , Alcamidas Poli-Insaturadas/química , Ratos , Proteínas Recombinantes/metabolismo
9.
J Chromatogr B Analyt Technol Biomed Life Sci ; 877(26): 2890-4, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19168403

RESUMO

Great effort has been devoted to characterize signaling lipids in central nervous system. This has led to a search for novel strategies to characterize hitherto unknown lipid compositions. Here we developed two methods, one for identification and one for quantification, for N-acyl amino acids, a novel lipid family. The identification method contains a series of purification steps followed by nano-LC/MS/MS and high-throughput screening of the datasets with a potent search algorithm based on fragment ion analysis. MS/MS spectra with good quality can be obtained with 150 fmol of targeted lipids on column with our nano-LC/MS/MS. More than one thousand mass spectra generated using the information dependent acquisition mode of Analyst QS software can be analyzed in 1 min using our home built software. The quantification method utilized the multiple reaction monitoring mode in Analyst software to measure the endogenous levels of N-acyl amino acids in rat brain. Using these two methods we were able to identify and quantify 11 previously reported N-acyl amino acids with endogenous levels ranging from 0.26 to 333 pmol g(-1) wet rat brain.


Assuntos
Aminoácidos/química , Química Encefálica , Cromatografia Líquida/métodos , Lipídeos/química , Espectrometria de Massas em Tandem/métodos , Animais , Masculino , Ratos , Ratos Sprague-Dawley , Software
10.
Bioorg Med Chem Lett ; 19(1): 237-41, 2009 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19013794

RESUMO

N-Arachidonoyl ethanolamide or anandamide is an endocannabinoid found in most tissues where it acts as an important signaling mediator in a number of physiological and pathophysiological processes. Consequently, intense effort has been focused on understanding all its biosynthetic and metabolic pathways. Herein we report human alcohol dehydrogenase-catalyzed sequential oxidation of anandamide to N-arachidonoyl glycine, a prototypical member of the class of long chain fatty acyl glycines, a new group of lipid mediators with a wide array of physiological effects. We also present a straightforward synthesis for a series of N-acyl glycinals including N-arachidonoyl glycinal, an intermediate in the alcohol dehydrogenase-catalyzed oxidation of anandamide.


Assuntos
Álcool Desidrogenase/metabolismo , Ácidos Araquidônicos/metabolismo , Glicina/biossíntese , Alcamidas Poli-Insaturadas/metabolismo , Catálise , Endocanabinoides , Humanos , Redes e Vias Metabólicas , Oxirredução
11.
J Neurosci ; 28(51): 13727-37, 2008 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-19091963

RESUMO

The ability to sense changes in the environment is essential for survival because it permits responses such as withdrawal from noxious stimuli and regulation of body temperature. Keratinocytes, which occupy much of the skin epidermis, are situated at the interface between the external environment and the body's internal milieu, and have long been appreciated for their barrier function against external insults. The recent discovery of temperature-sensitive transient receptor potential vanilloid (TRPV) ion channels in keratinocytes has raised the possibility that these cells also actively participate in acute temperature and pain sensation. To address this notion, we generated and characterized transgenic mice that overexpress TRPV3 in epidermal keratinocytes under the control of the keratin 14 promoter. Compared with wild-type controls, keratinocytes overexpressing TRPV3 exhibited larger currents as well as augmented prostaglandin E(2) (PGE(2)) release in response to two TRPV3 agonists, 2-aminoethoxydiphenyl borate (2APB) and heat. Thermal selection behavior and heat-evoked withdrawal behavior of naive mice overexpressing TRPV3 were not consistently altered. Upon selective pharmacological inhibition of TRPV1 with JNJ-17203212 [corrected], however, the keratinocyte-specific TRPV3 transgenic mice showed increased escape responses to noxious heat relative to their wild-type littermates. Coadministration of the cyclooxygenase inhibitor, ibuprofen, with the TRPV1 antagonist decreased inflammatory thermal hyperalgesia in transgenic but not wild-type animals. Our results reveal a previously undescribed mechanism for keratinocyte participation in thermal pain transduction through keratinocyte TRPV3 ion channels and the intercellular messenger PGE(2).


Assuntos
Dinoprostona/metabolismo , Queratinócitos/metabolismo , Limiar da Dor/fisiologia , Dor/metabolismo , Pele/citologia , Canais de Cátion TRPV/fisiologia , Aminopiridinas/farmacologia , Animais , Temperatura Corporal/efeitos dos fármacos , Células Cultivadas , Inibidores de Ciclo-Oxigenase/farmacologia , Expressão Gênica , Humanos , Ibuprofeno/farmacologia , Queratinócitos/citologia , Proteínas Luminescentes/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Medição da Dor/efeitos dos fármacos , Limiar da Dor/efeitos dos fármacos , Técnicas de Patch-Clamp , Piperazinas/farmacologia , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Temperatura , Transgenes
12.
FASEB J ; 22(8): 3024-34, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18492727

RESUMO

Burning of Boswellia resin as incense has been part of religious and cultural ceremonies for millennia and is believed to contribute to the spiritual exaltation associated with such events. Transient receptor potential vanilloid (TRPV) 3 is an ion channel implicated in the perception of warmth in the skin. TRPV3 mRNA has also been found in neurons throughout the brain; however, the role of TRPV3 channels there remains unknown. Here we show that incensole acetate (IA), a Boswellia resin constituent, is a potent TRPV3 agonist that causes anxiolytic-like and antidepressive-like behavioral effects in wild-type (WT) mice with concomitant changes in c-Fos activation in the brain. These behavioral effects were not noted in TRPV3(-/-) mice, suggesting that they are mediated via TRPV3 channels. IA activated TRPV3 channels stably expressed in HEK293 cells and in keratinocytes from TRPV3(+/+) mice. It had no effect on keratinocytes from TRPV3(-/-) mice and showed modest or no effect on TRPV1, TRPV2, and TRPV4, as well as on 24 other receptors, ion channels, and transport proteins. Our results imply that TRPV3 channels in the brain may play a role in emotional regulation. Furthermore, the biochemical and pharmacological effects of IA may provide a biological basis for deeply rooted cultural and religious traditions.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Diterpenos/farmacologia , Psicotrópicos/farmacologia , Canais de Cátion TRPV/agonistas , Animais , Ansiolíticos/isolamento & purificação , Ansiolíticos/farmacologia , Antidepressivos/isolamento & purificação , Antidepressivos/farmacologia , Comportamento Animal/efeitos dos fármacos , Boswellia/química , Linhagem Celular , Diterpenos/isolamento & purificação , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plantas Medicinais/química , Proteínas Proto-Oncogênicas c-fos/metabolismo , Psicotrópicos/isolamento & purificação , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Canais de Cátion TRPV/deficiência , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo
13.
J Biol Chem ; 283(30): 21054-64, 2008 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-18499677

RESUMO

A series of small compounds acting at the orphan G protein-coupled receptor GPR92 were screened using a signaling pathway-specific reporter assay system. Lipid-derived molecules including farnesyl pyrophosphate (FPP), N-arachidonylglycine (NAG), and lysophosphatidic acid were found to activate GPR92. FPP and lysophosphatidic acid were able to activate both G(q/11)- and G(s)-mediated signaling pathways, whereas NAG activated only the G(q/11)-mediated signaling pathway. Computer-simulated modeling combined with site-directed mutagenesis of GPR92 indicated that Thr(97), Gly(98), Phe(101), and Arg(267) of GPR92 are responsible for the interaction of GPR92 with FPP and NAG. Reverse transcription-PCR analysis revealed that GPR92 mRNA is highly expressed in the dorsal root ganglia (DRG) but faint in other brain regions. Peripheral tissues including, spleen, stomach, small intestine, and kidney also expressed GPR92 mRNA. Immunohistochemical analysis revealed that GPR92 is largely co-localized with TRPV1, a nonspecific cation channel that responds to noxious heat, in mouse and human DRG. FPP and NAG increased intracellular Ca(2+) levels in cultured DRG neurons. These results suggest that FPP and NAG play a role in the sensory nervous system through activation of GPR92.


Assuntos
Ácidos Araquidônicos/química , Glicina/análogos & derivados , Fosfatos de Poli-Isoprenil/química , Receptores de Ácidos Lisofosfatídicos/química , Sesquiterpenos/química , Cálcio/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/química , Glicina/química , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Humanos , Fosfatos de Inositol/metabolismo , Ligantes , Lisofosfolipídeos/química , Modelos Biológicos , Neurônios/metabolismo , Transdução de Sinais , Distribuição Tecidual
14.
Mol Pharmacol ; 74(1): 213-24, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18424551

RESUMO

N-arachidonoyl glycine is an endogenous arachidonoyl amide that activates the orphan G protein-coupled receptor (GPCR) GPR18 in a pertussis toxin (PTX)-sensitive manner and produces antinociceptive and antiinflammatory effects. It is produced by direct conjugation of arachidonic acid to glycine and by oxidative metabolism of the endocannabinoid anandamide. Based on the presence of enzymes that conjugate fatty acids with glycine and the high abundance of palmitic acid in the brain, we hypothesized the endogenous formation of the saturated N-acyl amide N-palmitoyl glycine (PalGly). PalGly was partially purified from rat lipid extracts and identified using nano-high-performance liquid chromatography/hybrid quadrupole time-of-flight mass spectrometry. Here, we show that PalGly is produced after cellular stimulation and that it occurs in high levels in rat skin and spinal cord. PalGly was up-regulated in fatty acid amide hydrolase knockout mice, suggesting a pathway for enzymatic regulation. PalGly potently inhibited heat-evoked firing of nociceptive neurons in rat dorsal horn. In addition, PalGly induced transient calcium influx in native adult dorsal root ganglion (DRG) cells and a DRG-like cell line (F-11). The effect of PalGly on the latter cells was characterized by strict structural requirements, PTX sensitivity, and dependence on the presence of extracellular calcium. PalGly-induced calcium influx was blocked by the nonselective calcium channel blockers ruthenium red, 1-(beta-[3-(4-methoxyphenyl)propoxy]-4-methoxyphenethyl)-1H-imidazole (SK&F96365), and La3+. Furthermore, PalGly contributed to the production of NO through calcium-sensitive nitric-oxide synthase enzymes present in F-11 cells and was inhibited by the nitric-oxide synthase inhibitor 7-nitroindazole.


Assuntos
Cálcio/metabolismo , Glicina/análogos & derivados , Glicina/farmacologia , Neurônios Aferentes/metabolismo , Óxido Nítrico/biossíntese , Ácidos Palmíticos/farmacologia , Receptores de Canabinoides/metabolismo , Amidoidrolases/antagonistas & inibidores , Amidoidrolases/genética , Amidoidrolases/metabolismo , Animais , Anticorpos , Benzamidas/farmacologia , Química Encefálica , Carbamatos/farmacologia , Linhagem Celular , Cruzamentos Genéticos , Relação Dose-Resposta a Droga , Eletrofisiologia , Inibidores Enzimáticos/farmacologia , Feminino , Gânglios Espinais/química , Gânglios Espinais/citologia , Glicina/análise , Glicina/química , Glicina/isolamento & purificação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nociceptores/efeitos dos fármacos , Ácidos Palmíticos/química , Toxina Pertussis/farmacologia , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual , Regulação para Cima
15.
Br J Pharmacol ; 153(7): 1538-49, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18297109

RESUMO

BACKGROUND AND PURPOSE: Recombinant cyclooxygenase-2 (COX-2) oxygenates 2-arachidonoylglycerol (2-AG) in vitro. We examined whether prostaglandin E2 glycerol ester (PGE2-G), a COX-2 metabolite of 2-AG, occurs endogenously and affects nociception and immune responses. EXPERIMENTAL APPROACH: Using mass spectrometric techniques, we examined whether PGE2-G occurs in vivo and if its levels are altered by inhibition of COX-2, monoacylglycerol (MAG) lipase or inflammation induced by carrageenan. We also examined the effects of PGE2-G on nociception in rats and NFkappaB activity in RAW264.7 cells. KEY RESULTS: PGE2-G occurs endogenously in rat. Its levels were decreased by inhibition of COX-2 and MAG lipase but were unaffected by carrageenan. Intraplantar administration of PGE2-G induced mechanical allodynia and thermal hyperalgesia. In RAW264.7 cells, PGE2-G and PGE2 produced similar, dose-related changes in NFkappaB activity. PGE2-G was quickly metabolized into PGE2. While the effects of PGE2 on thermal hyperalgesia and NFkappaB activity were completely blocked by a cocktail of antagonists for prostanoid receptors, the same cocktail of antagonists only partially antagonized the actions of PGE2-G. CONCLUSIONS AND IMPLICATIONS: Thermal hyperalgesia and immunomodulation induced by PGE2-G were only partially mediated by PGE2, which is formed by metabolism of PGE2-G. PGE2-G may function through a unique receptor previously postulated to mediate its effects. Taken together, these findings demonstrate that 2-AG is oxygenated in vivo by COX-2 producing PGE2-G, which plays a role in pain and immunomodulation. COX-2 could act as an enzymatic switch by converting 2-AG from an antinociceptive mediator to a pro-nociceptive prostanoid.


Assuntos
Ácidos Araquidônicos/metabolismo , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/análogos & derivados , Dinoprostona/metabolismo , Glicerídeos/metabolismo , Hiperalgesia/etiologia , Animais , Linhagem Celular , Dinoprostona/biossíntese , Dinoprostona/farmacologia , Endocanabinoides , Temperatura Alta , Macrófagos/metabolismo , Masculino , Espectrometria de Massas , Camundongos , NF-kappa B/metabolismo , Dor/etiologia , Medição da Dor , Ratos , Ratos Sprague-Dawley , Receptores de Prostaglandina/metabolismo
16.
J Am Soc Mass Spectrom ; 19(1): 14-26, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18024058

RESUMO

The fragmentation of 5-hydroxy-6-glutathionyl-7,9,11,14-eicosatetraenoic acid [leukotriene C4 or LTC4 (5, 6)] and its isomeric counterpart LTC4 (14, 15) were studied by low and high-energy collisional induced dissociation (CID) and 157 nm photofragmentation. For singly charged protonated LTC4 precursors, photodissociation significantly enhances the signal intensities of informative fragment ions that are very important to distinguish the two LTC4 isomers and generates a few additional fragment ions that are not usually observed in CID experiments. The ion trap enables MSn experiments on the fragment ions generated by photodissociation. Photofragmentation is found to be suitable for the structural identification and isomeric differentiation of cysteinyl leukotrienes and is more informative than low or high-energy CID. We describe for the first time the structural characterization of the LTC4 (14, 15) isomer by mass spectrometry using CID and 157 nm light activation methods.


Assuntos
Leucotrieno C4/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Isomerismo , Estrutura Molecular , Fotoquímica
17.
FEBS Lett ; 581(25): 4927-31, 2007 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-17904123

RESUMO

Recent studies have highlighted the importance of paracrine growth factors as mediators of pro-angiogenic effects by endothelial progenitor cells (EPCs), but little is known about the release of lipid-based factors like endocannabinoids by EPCs. In the current study, the release of the endocannabinoids anandamide and 2-arachidonoylglycerol by distinct human EPC sub-types was measured using HPLC/tandem mass-spectrometry. Anandamide release was highest by adult blood colony-forming EPCs at baseline and they also demonstrated increased 2-arachidonoylglycerol release with TNF-alpha stimulation. Treatment of mature endothelial cells with endocannabinoids significantly reduced the induction of the pro-inflammatory adhesion molecule CD106 (VCAM-1) by TNF-alpha.


Assuntos
Ácidos Araquidônicos/biossíntese , Moduladores de Receptores de Canabinoides/biossíntese , Endocanabinoides , Endotélio Vascular/citologia , Glicerídeos/biossíntese , Células-Tronco/metabolismo , Ácidos Araquidônicos/farmacologia , Moduladores de Receptores de Canabinoides/farmacologia , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Glicerídeos/farmacologia , Humanos , Alcamidas Poli-Insaturadas/farmacologia , Células-Tronco/classificação , Células-Tronco/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Regulação para Cima , Molécula 1 de Adesão de Célula Vascular/metabolismo
18.
Bioorg Med Chem ; 15(18): 6164-9, 2007 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-17616464

RESUMO

The SAR of capsazepine revealed that tetrahydroisoquinoline (TIQ) moiety is a core pharmacophore of TRPV1 activity. This implied that conjugates of endogenous TIQs with fatty acids would be active at TRPV1 receptors. Six such compounds were synthesized and tested for calcium mobilization at recombinant TRPV1 receptors overexpressed in HEK293 cells. Three compounds showed partial TRPV1 agonism with EC(50) values in the low micromolar range and maximal efficacies between 25% and 55% of capsaicin.


Assuntos
Amidas/farmacologia , Cálcio/metabolismo , Capsaicina/análogos & derivados , Ácidos Graxos/farmacologia , Rim/efeitos dos fármacos , Canais de Cátion TRPV/agonistas , Tetra-Hidroisoquinolinas/química , Amidas/síntese química , Amidas/química , Capsaicina/farmacologia , Células Cultivadas , Ácidos Graxos/síntese química , Ácidos Graxos/química , Humanos , Rim/citologia , Rim/metabolismo , Proteínas Recombinantes/agonistas , Proteínas Recombinantes/metabolismo , Canais de Cátion TRPV/metabolismo
19.
Neurosci Lett ; 421(3): 270-4, 2007 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-17574742

RESUMO

Chronic alcohol exposure leads to significant changes in the levels of endocannabinoids and their receptors in the brains of humans and laboratory animals, as well as in cultured neuronal cells. However, little is known about the effects of short-term periods of alcohol exposure. In the present study, we examined the changes in endocannabinoid levels (anandamide and 2-arachidonoylglycerol), as well as four additional N-acylethanolamines, in four brain regions of rats exposed to alcohol through the liquid diet for a period of 24h. The levels of N-acylethanolamines were diminished 24h after the onset of alcohol exposure. This was particularly evident for anandamide in the hypothalamus, amygdala and caudate-putamen, for N-palmitoylethanolamine in the caudate-putamen, for N-oleoylethanolamine in the hypothalamus, caudate-putamen and prefrontal cortex, and for N-stearoylethanolamine in the amygdala. The only exception was N-linoleoylethanolamine for which the levels increased in the amygdala after the exposure to alcohol. The levels of the other major endocannabinoid, 2-arachidonoylglycerol, were also reduced with marked effects in the prefrontal cortex. These results support the notion that short-term alcohol exposure reduces endocannabinoid levels in the brain accompanied by a reduction in several related N-acylethanolamines.


Assuntos
Ácidos Araquidônicos/análise , Encéfalo/efeitos dos fármacos , Depressores do Sistema Nervoso Central/farmacologia , Etanol/farmacologia , Etanolaminas/análise , Glicerídeos/análise , Alcamidas Poli-Insaturadas/análise , Animais , Química Encefálica/efeitos dos fármacos , Cromatografia Líquida/métodos , Endocanabinoides , Masculino , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem/métodos
20.
Bioorg Med Chem ; 15(10): 3345-55, 2007 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-17383881

RESUMO

A library of amino acid-fatty acid conjugates (elmiric acids) was synthesized and evaluated for activity as potential anti-inflammatory agents. The compounds were tested in vitro for their effects on cell proliferation and prostaglandin production, and compared with their effects on in vivo models of inflammation. LPS stimulated RAW 267.4 mouse macrophage cells were the in vitro model and phorbol ester-induced mouse ear edema served as the principal in vivo model. The prostaglandin responses were found to be strongly dependent on the nature of the fatty acid part of the molecule. Polyunsaturated acid conjugates produced a marked increase in media levels of i15-deoxy-PGJ(2) with minimal effects on PGE production. It is reported in the literature that prostaglandin ratios in which the J series predominates over the E series promote the resolution of inflammatory conditions. Several of the elmiric acids tested here produced such favorable ratios suggesting that their potential anti-inflammatory activity occurs via a novel mechanism of action. The ear edema assay results were generally in agreement with the prostaglandin assay findings indicating a connection between them.


Assuntos
Anti-Inflamatórios , Alanina/química , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Cromatografia em Camada Fina , Avaliação Pré-Clínica de Medicamentos , Edema/induzido quimicamente , Edema/prevenção & controle , Ácidos Graxos/química , Glicina/química , Indicadores e Reagentes , Macrófagos/efeitos dos fármacos , Espectroscopia de Ressonância Magnética , Masculino , Camundongos , Ésteres de Forbol , Antagonistas de Prostaglandina/síntese química , Antagonistas de Prostaglandina/farmacologia , Espectrofotometria Ultravioleta , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...